Semantic Role Labeling of Chinese Using Transductive SVM and Semantic Heuristics

نویسندگان

  • Yaodong Chen
  • Ting Wang
  • Huowang Chen
  • Xishan Xu
چکیده

Semantic Role Labeling (SRL) as a Shallow Semantic Parsing causes more and more attention recently. The shortage of manually tagged data is one of main obstacles to supervised learning, which is even serious in SRL. Transductive SVM (TSVM) is a novel semi-supervised learning method special to small mount of tagged data. In this paper, we introduce an application of TSVM in Chinese SRL. To improve the performance of TSVM, some heuristics have been designed from the semantic perspective. The experiment results on Chinese Propbank showed that TSVM outperforms SVM in small tagged data, and after using heuristics, it performs further better.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Tree Representations for Chinese Semantic Role Labeling

We compare different parse tree representations for the task of Chinese Semantic Role Labeling (SRL), including dependency and constituency parse trees, two tree pruning methods, and neighbor features. Three learning models are compared. By using SVM classifier with neighbor features and pruning tree to phrase level we achieve significantly better speed and accuracy than state of the art Chines...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Combining Constituent and Dependency Syntactic Views for Chinese Semantic Role Labeling

This paper presents a novel featurebased semantic role labeling (SRL) method which uses both constituent and dependency syntactic views. Comparing to the traditional SRL method relying on only one syntactic view, the method has a much richer set of syntactic features. First we select several important constituent-based and dependency-based features from existing studies as basic features. Then,...

متن کامل

VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine

Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008